If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2+8r+1=0
a = 2; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·2·1
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{14}}{2*2}=\frac{-8-2\sqrt{14}}{4} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{14}}{2*2}=\frac{-8+2\sqrt{14}}{4} $
| 2(v-2)-7v=11 | | t2+10t=-9 | | -3(x+2)-2/3x=8 | | −5x−12=−42 | | 4(2x-3)=-3 | | 6x-12+3=-3x+9 | | 3/w=w/5-4 | | X-18=-18+25x | | -19x+14=-10 | | x=56+89-2x | | 7-4z=11 | | -3(x+4)=6x-4-8x | | -16=4(x-3)+3(2-x) | | 5/6x=5/8x+10 | | 7=2+5y-6 | | 56+13=5b | | 2(x-4)=10-x | | 1/2-5/8v=7/8v+7/2 | | -2x+62=180 | | 5n^2-2n+1=0 | | 1/2-5v/8v=7v/8v+7/2 | | -8y+2(y+7)=20 | | 13a+4a+3a=180 | | 0.19m-30=21.45 | | 2x+6=-4-4 | | 19m-30=21.45 | | 14t+96=180 | | G=3x+18 | | 19x+2=-2+41x | | (8a)=(2a) | | 2v/3v-6=6-2v/3v | | 4s+100=180 |